support@kaust.edu.sa
+966 (12) 808-3463
BioActives-icon-01
  • Home
  • People
    • Former members
  • Research
  • Publications
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Collaborators
  • News
  • Contact us
breadcrumb-bg

Plant apocarotenoids: from retrograde signaling to interspecific communication

  1. Home
  2. Publications
  3. 2020

Plant apocarotenoids: from retrograde signaling to interspecific communication

by Juan C. Moreno, Jianing Mi, Yagiz Alagoz, Salim Al-Babili
Scientific Year: 2020 DOI: 10.1111/tpj.15102

Abstract

Carotenoids are isoprenoid compounds synthesized by all photosynthetic and some non-photosynthetic organisms. They are essential for photosynthesis and contribute to many other aspects of a plant's life. The oxidative breakdown of carotenoids gives rise to the formation of a diverse family of essential metabolites called apocarotenoids. This metabolic process either takes place spontaneously through reactive oxygen species or is catalyzed by enzymes generally belonging to the CAROTENOID CLEAVAGE DIOXYGENASE family. Apocarotenoids include the phytohormones abscisic acid and strigolactones (SLs), signaling molecules and growth regulators. Abscisic acid and SLs are vital in regulating plant growth, development and stress response. SLs are also an essential component in plants’ rhizospheric communication with symbionts and parasites. Other apocarotenoid small molecules, such as blumenols, mycorradicins, zaxinone, anchorene, β-cyclocitral, β-cyclogeranic acid, β-ionone and loliolide, are involved in plant growth and development, and/or contribute to different processes, including arbuscular mycorrhiza symbiosis, abiotic stress response, plant–plant and plant–herbivore interactions and plastid retrograde signaling. There are also indications for the presence of structurally unidentified linear cis-carotene-derived apocarotenoids, which are presumed to modulate plastid biogenesis and leaf morphology, among other developmental processes. Here, we provide an overview on the biology of old, recently discovered and supposed plant apocarotenoid signaling molecules, describing their biosynthesis, developmental and physiological functions, and role as a messenger in plant communication.


 

Keywords

carotenoids apocarotenoids carotenoid cleavage dioxygenase strigolactones SLS
logo-white

"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."

King Abdullah bin Abdulaziz Al Saud, 1924 – 2015

Contact Us

  • +966 (12) 808-2565
  • salim.babili@kaust.edu.sa 

4700 King Abdullah University of Science and Technology

Thuwal 23955-6900

Kingdom of Saudi Arabia

Quick links

  • Contact us
Flag Counter

© King Abdullah University of Science and Technology. All rights reserved

Privacy Policy
Terms of Use
Loading...